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FOREWORD

This is the final report for contract F49620-84-C-0025, entitled "Development

of Techniques for Interactive Structural and Controller Synthesis for Control-Configured

Spacecraft", from the Air Force Office of Scientific Research. The Program Manager was

Dr. A.K. Amos. Integrated Systems, Inc. was a subcontractor. The period of work covered

by this report is March 1, 1984 through October 30, 1985.
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SECTION 1

PROBLEM DESCRIPTION

Large, flexible spacecraft have ambitious performance requirements that must be
met in the presence of a variety of disturbances. The natural-frequency spectrum of such
spacecraft is typically quite dense, with a number of modes below 1.0 Hz, and damping
levels are small. Active controls, whether for maneuvering or for disturbance rejection,

" interact strongly with the flexible structural modes. The design of controllers for these
spacecraft involves such problems as the selection of a reduced-order structural model, the
choice of sensor and actuator types and locations, and the control strategy itself. Tradi-

• "tionally, this has been preceded by the design of the structure, with very little interaction
between the two processes, as is illustrated in Figure 1. In view of the advances that have

.- been made separately in the optimal design of structures and controls, great interest has
"" arisen in integrating the two into a single optimal design problem.

.- 00,

• 
Ceplalle)

3.

Figure . Serial Structural and Controller Synthesis Procedure for Large

o-w Spacecraft.

liE5

, The controllers considered fall naturally into two classes: those for maneuver

control and those for vibration regulation. References 1 and 2 are recent examples of

~work with the former type. The integrated problem involves solving for both structural

parameters and an optimal control for a specified maneuver. Both References 1 and 2 use

modal truncation in order to reduce the size of the problem.
f--
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Approaches to integrated design for vibration regulation have for the most part
considered a system with a linear regulator. The model is not reduced, and the cost func-
tion involves both structural parameters and the elements of a feedback gain matrix. In
References 3 and 4, the gains are determined so as to minimize a quadratic cost function
that is combined with a structural cost function. Reference 5 has a more general formula-
tion, in that the gains are controlled by eigenvalue placement, and more freedom is allowed
in selecting the cost function. More specialized approaches include those of References 6
and 7. In Reference 6, lattice plate finite elements based on a continum model of a large IV
space structure are used; these elements permit an evaluation of the effects of structural
parameter variations on the performance of reduced-order linear quadratic regulators. In
Reference 7, an algorithm to obtain maximal reduction in required control strength for
a minimal structural modification is developed and demonstrated for a colocated force-
actuator velocity-sensor pair. A completely different approach to integrated design with
set-theoretic methods is proposed in Reference 8.

With the exception of References 1, 2, and 6, where model-reduction schemes are
employed, none of the work cited above deals with one of the principal problems that
arises in the design of controllers for truly large spacecraft - the need to adopt a lower-
order model both for evaluation purposes and for implementing a practical controller. This
is understandable, since the simultaneous design of a structure and a full-order controller
is conceptually an enormous task for large systems, without the added complication of
including an estimator for a lower-order controller. Furthermore, the model-reduction
task itself is far from simple, and there are many different schemes for accomplishing it.

Consider now the generic problem of reducing the effects of disturbances so as
to achieve a desired level of performance in a large, flexible spacecraft. Clearly, the role
of the controller is to augment whatever disturbance-rejection qualities the spacecraft
structure may inherently exhibit. This implies that the controller must be effective where
the structure is least effective. And, once the reduced-order model has been selected,
filtering is one of the principal steps taken to avoid problems from spillover effects. These
considerations lead to exploring the use of automated structural redesign for two purposes:

(1) To enhance as much as possible the inherent disturbance-rejection qualities of the
structure, and

(2) To shape the frequency spectrum, if needed, in order to provide adequate spacing

for frequency isolation of the controller.

*i As will be seen, some control over the frequency spectrum is helpful in any event.

This is the controller/structure interaction problem that is considered in this re- M

port. Since the structural redesign takes place before the loop is closed, this is not a truly
integrated approach. It is, however, a necessary first step in the development of an inte- .

*. grated design capability for realistic large-scale structures. Moreover, it will be shown that
the techniques developed here are readily extendable to the integrated structure/controller
design problem.

3
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SECTION 2

TECHNICAL APPROACH

2.1 Model Reduction

The framework for the approach to structural redesign is provided by a model-
reduction scheme based on internal balancing (Reference 9).

A linear, time-invariant, asymptotically stable system has equations of motion
that can be written in the familiar form

{i) = [A]{z) + [B]{u)

{y} = [c{z}(

Here {z} is a column of system states, (A] is the system matrix, {u) is a column
of control inputs, [B] is the control distribution matrix, {y) is a column of outputs, [C] is

L the corresponding distribution matrix, and the dot symbol (-) denotes differentiation with

respect to time t. The controllability grammian [Wc]2 and observability grainmian [Wo]2

are given by

00L e[Alt IBITeIAJ'rtdt(2, ~~[W611=  ,,'][B) ,[B ] ,

[Wo]
2 = ejAl't[C]T[C]

e A ]tdt 
(2)

The system represented by Equation 1 is said to be internally balanced if

[WC]2 = [Wo12 = [ 2, (3)
p.d

where the elements of the diagonal matrix [j J are o, o,..., o, with n being the order
of the system, and i < j implying o < o. It is shown in Reference 9 that any model
of the form (1) can be taken to internally balanced form by a similarity transformation
on the states {z}. It is also shown that if a balanced model is partitioned into, say, two

-: subsystems, then the subsystems are also asymptotically stable (special steps must be
taken if the o are not distinct).

The ability to quantify controllability and observability rankings and the stability
property of subsystems are attractive characteristics for a model-reduction scheme. How-

• ever, the need for similarity transformation and the concomitant loss of the original model
states is undesirable, particularly for large-scale systems. This undesirable effect can be 4

avoided if the structure is lightly damped and has decoupled dynamics; one is therefore led
naturally to a modal state-space representation of a large-spacecraft structural-dynamics
model in the form

4
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i=1

There are n modal coordinates "i, with frequency wi and damping ratio ,. The

ith row of [B] is [b,], and the ith row of the distribution matrix [D] is [d,]. The distur-

bance inputs are {w) and the measurements are {z}. The measurement matrix [M] and

regulated-variable matrix [C] are partitioned into blocks multiplying { ,) and {ii), and

the it h columns of these blocks are denoted by {ml, I, {m2,, {c, I, and {C, I, respectively.

The performance measure for the controller is assumed to be

t 0 lim E({Y} T { }) (5)

Let this model be the evaluation model (see Figure 1). In Reference 9 it is shown

that the internal-balancing transformation simplifies, for C, < 1 and certain conditions

on the frequency separation, to a simple diagonal scaling transformation. The modal

decoupling is thus preserved in the internally balanced form of the model, and in fact it is

not necessary to deal explicitly with the transformed model. The elements of the (equal)

controllability and observability grammians are given by

V2 1 ([bir[biT ({C 1 }T{C 1 + 12 C~j T fC1"I (6)

The actual modal-selection process of Reference 9 applies the internal-balancing

concept to four separate input-output pairs:

* Disturbability to regulated variable: [1 2:
DC.

* Controllability to regulated variable: [ E 1

* Disturbability to sensors: [ D M.

* Controllability to sensors: M ]-

The subscripts correspond to the various matrices that are involved in the computations

of the grammians. Thus the second grammian, [ ]2, corresponds to the example given

above. The elements of these grammians will be identified with the same subscripts, and

Aexpressions for all of these resemble the expression (6) above for ,2

"B ,

5 U
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The elements of[ ]DC give modal rankings based on open-loop performance.
Large values indicate relatively large disturbance propagation to the output. These mea-
sures are similar, but not equivalent, to the modal costs of Reference 10.

The elements of [ '] 2Cpermit rankings based on the modal controllability of the
performance. A small value of the ith element indicates that the given actuator configu-
ration cannot directly affect the contribution of the Oh mode to the performance.

The elements of [ ]2 M rank the observability of disturbances in the sensors. A
mode whose corresponding element in this matrix is relatively small may be difficult to
estimate on-line.

-.*. The elements of [ 2 IM provide a mode-by-mode measure of potential controller
authority for the given set of actuators and sensors.

The mode-selection process involving these four rankings is summarized as follows
(Reference 9):

1. Select the modes having the largest DC, . These modes contribute most to the
performance objectives, and with reasonable actuator and sensor placements, it
should be possible to control each of the modes to some extent.

2. Examine the 4 M** Include in the design model any highly controllable/measurable
modes not selected in Step 1, especially if they are close in frequency to selected
modes. Omission of these modes can cause spillover, which can destabilize the
system.

3. Examine the 4 M* and the a2. Unselected modes having large values in ei-
* -ther of these rankings indicate actuator/sensor configuration pathologies. A large

"DM, indicates an unmodelled mode in the measurements, which will inhibit state
* estimation. An unmodelled mode with large A4 C, may be driven in unpredictable

ways by the controller to the detriment of performance. In either case, the modes
should be included.

2.2 Structural Redesign

. .As is indicated in the foregoing discussion, the process of model reduction can becomplicated, and combining it ab initio with an automated structural redesign procedure
" . is not warranted. A more useful first step is to consider the open-loop problem and deal

solely with the effects of disturbances on the performance as measured by the O4D¢. It is
also useful to exert some control over the frequency spectrum. These considerations lead
to the following problem statement:

Minimize W(t), i =1,2,..., Nd

6
2 fi./ w~ ~~
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, :, 1, 2,. .. , N (7)

1 !t, < t,_ , i = 1,2,...,N,,

The objective function is the weight W, parameterized as a function of Nd de-
sign variables ti. The behavioral constraints are represented by upper bounds ai on N9 .-
grammians a2c, and upper bounds oi and lower bounds i on the frequencies Wi of N/
modes. Side constraints t i and ti can be imposed on the design variables. The scenario "
envisaged here is one in which a designer is seeking to improve a design judged deficient 41
in its disturbance-rejection capabilities, as measured by the OrD, while at the same time

D~i '

tailoring the structure's natural-frequency spectrum to improve filtering or to avoid fre fquency excursions into an undesirable band. Making weight the objective serves to ensure,
, at the least, a minimum weight addition to achieve the desired behavior, and the designer

can trade off weight against structural capabilities by varying the constraint bounds. This
scenario is illustrated in Figure 2. b

* eviage hre s ne n hic adesgnr is seking ... mprvea.dsin.jdge.dficen

anarde o w A( ili t

,V

..

Figure 2. Initial Interactive Structural and Controller Synthesis Procedure
for Large Spacecraft. '"

ft4

F As posed above, this structural redesign problem is amenable to solution by a

number of optimal search techniques. Virtually all of these techniques require sensitivity
information in the form of derivatives of the objective and constraints with respect to

7 U:-
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the design variables. While these derivatives can be obtained by finite differencing, it is
generally more efficient to compute them from analytical expressions.

First, it is necessary to parameterize the structure itself. The structure is mod-
eled with finite elements, and nodal locations are assumed fixed (i.e., shape changes are
excluded). Design variables are typically member sizes, such as bar cross-sectional areas
or plate thicknesses. Since space structures are very commonly made up from trusses, the
elements to be used are restricted to tubular bar elements. For a thin-walled tubular cross
section of radius R and thickness d, the inertial and stiffness properties vary as shown in
Table 1. Three resizing options are permitted:

* '.1 (1) Vary only the tube thickness, with side constraints to ensure that the thin-wall
assumption is not violated.

(2) Vary only the radius; side constraints are also applicable here to preserve the

thin-wall assumption.

- (3) Scale the complete cross section - i.e., both the radius and thickness vary in the
same proportion.

TABLE 1.

Variation of Inertial and Stiffness Properties of a Thin-Walled Tubular Cross Sec-
tion of Radius R and Thickness d.

Axial Bending Torsion

Inertial Rd Rd R3 d
Stiffness Rd R 3 d R3 d

- For any combination of these options, the discrete mass and stiffness matrices of the
structure can be parameterized as follows:

Nd

* [K] = [K.] + (4)"iKt]
-(8)

__- Nd[M] IM IMo + (4 M

The matrices [K.] and [Mo] represent nonactive structure, or structure that is not to be
resized (payload, for example). Note that once the geometry of the structure is fixed, the
matrices [Ko], [Ki], [Mo], and [M,] are fixed. Therefore computation of derivatives, as well
as updating the mass and stiffness matrices, is particularly simple.

8
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In a manner consistent with Equation (9), the weight can be expanded as

Nd
w = w0 + W(9);t., ,=1,

If the tube's thickness or its radius is the design variable, then m -1. For the scaling of
the complete cross section, m = 2.

To transform to modal coordinates, the system eigenvector matrix 140 is needed.
At this point, another important assumption is made. In order to reduce the size of the
analysis problem during redesign, the eigenvectors of the initial design are used as basis
vectors for the transformation to modal coordinates during the redesign process. Thus the
order of the model during redesign remains that of the evaluation model, rather than that
of the original discrete model. (Some accuracy may possibly be sacrificed, particularly
if the design changes significantly. However, if accuracy is unduly compromised, [0] can
easily be updated.) With IGK] = 10] T K]J0], [GM] = [qb] T [M][0], Equations (8) transform
to

[GKI = IGKo] + N(d hi)GKj

Nd (10)
1GM) = 1GMo] + ,(t,)k; 1GM,]

The modal coordinates {r} from Equation (4) are related to the discrete coordinates {q}
as

{q} = 1I1'k]{ } (11) |

Here [44 is a square eigenvector matrix in modal coordinates that must be updated at each
redesign step. The disturbance-to-regulated-variable grammian a2* is

2DC, -- ( 1[ddV'( {cj,}T{cj,} + -{C2,} {C2} (12)

The discrete regulated-variable distribution matrix [C] and disturbance distribution matrix
ID] are related to their modal counterparts through the transformation (11): -

[C] C 21 to] 101 011(13)
[D] = [4j T [O] T [f]

, 9
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Hence

[d,] {,}T[ ]rj] "

{C1) = (14)
,Fi{,C F) ["

where {0,} is the ith column of [0]. The problem of computing 4OC, /t, therefore reduces
to that of computing the derivatives of {0j} and w,. The undamped modal representation
of the system is given by

([GK] - w?[GM]){,}={O} (15)

Differentiating this equation with respect to ti yields

([GKj - w?[GM,, - 2w!i IGMI + GK] -wGM]= {0 (16)

where (GKAj] = [ J, etc.

Pre-multiplying Equation (15) by { 4 ,}T and solving for awi/t gives (Reference 11)

8w,_{t }T( [GK] -w?[GMW) {0j,
• ,.a{_b (17)a= 2,,,{O/, } [GM{){,,

This is a very simple expression that is useful if only c wil/8 is needed. To get the
eigenvector derivative, it is preferable to add a normalization condition and solve for the
eigenvector and eigenvalue derivatives simultaneously (Reference 12). Let

{¢,k}[GMI{,p.} = 1, (18)

so that

2{),ITjGM){,pO,,,} = -{',}jT [GM ,j{ ,0} (19)

Combining Equations (16) and (19) produces the linear system

[I GK] - w?IGM] -2w,[GM]{Okj}] R - _ ([GK,] - 0 [GMj I~}' (20)
2{ti) T IG M] 0 4 6O w\,to

10
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From Equations (10), i
(GKj.,] = hi(ti)h-'[GKi (21),

[GMj] = ky(ti);-'GM] (21)

Equation (12) can be simplified somewhat by making use of Equation (14). The products
in Equation (12) become

6, = [d,][dj T =

0i= {cli IT{Ci. = {,}T[,0jT[i1T1]js,{,, {,).T[GOI {0j} 22
Ia.~G 1LI

0r2. = {C2i IT 1C2~J = L{ijL'-"-2JLiI

Like the matrices [GK] and [GM,], the matrices [GD], (GC], and [GO 2] are
invariant during re-design. They are also symmetric, so that

c ti = 2{0j T[GD]{0ijj

= 2{0i} T [GC2J{ij} (23)
8102, I

Chain-rule differentiation of Equation (12) produces the desired derivative of Dc:

sot, , 8., 86, 8t, 8 , + (24)8, 82"t

2.3 Optimization Procedure

Before the actual optimization strategy is discussed, it is desirable to recast the
problem statement of Equations (7) into a generic form. The behavioral constraints are
rewritten in dimensionless form as follows:

.5-

(or2C i I)-1<0, i=1,2,...,N'

1(25)
1 - j,/ ) < 0 (i -- 1,2 ,. , ,N f)

N%



If necessary, the objective function as expressed in Equation (9) can also be scaled
in order to avoid numerical difficulties. Similarly, it is useful to view the design variables
t as scale factors on the actual physical parameters. Thus the initial design is always
characterized by ti - 1.0 for all i. The optimization problem becomes

Minimize
W(t,), i=1,2,...,Nd

subject to
Gj(t,) 50, j=1,2,...,Ng+N(.; (26)

.:1, tj:ti , i--l,2,...,Nd

Here the constraint functions Gi take the appropriate forms as given in Equations (25).

£1

UA

, VG Usable-Feuible Sector

"VG G >

;., Figure 3. Direction-finding Problem at a Constraint Boundary.

. The optimal search strategy is based on the method of feasible directions (Refer-
ence 13), as implemented in the general purpose optimization code CONMIN (Reference

' " 14). The feasible-directions procedure is illustrated in Figure 3, for two design variables
• • and a single constraint. If the initial design (A) is not at a constraint boundary, then the

problem is at that point unconstrained, and a steepest-descent search direction is selected.
~This direction is followed until the constraint boundary is encountered (B). Let the search

direction at point B be defined by the vector 9. The condition that this vector direction

be feasible-that is, not violate the constraint within a linear approximation about B-is

" 12
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I ,,' . , ' ' ... , " .,' - '.-.-.- -" - ,.-.,'. "€,',., ''". '".- -''' -.- -''"... ,-. "- . .," " ' ' " """ ' ' "' ""' -



S.VG <0 (27)

To be usable, this direction must also reduce the objective function. Within the same
linear approximation, this requirement is expressed by

S . < 0 (28)

These two conditions define the usable-feasible sector. Any design change within this sector

will both reduce the objective function and satisfy the constraint.

CONMIN employs the method of Reference 13 to select S. The direction vector
and a scalar 6 are found such that P is maximized according to the following conditions:

g.v + 065 0
§ .vw + _ 0 (29)

191 bounded

Here 6 plays the role of a slack variable, which is added to the usable-feasible conditions

and is scaled by a positive constant 0. When 0 is unity, the feasible and usable conditions
are equally biased. Other values of 0 can be used to force the search dirction towards one
sector boundary or the other. For example, if the constraint boundary is strongly concave,
as in Figure 3, convergence would be enhanced by using a relatively high value of 9, which
would force the search direction away from the constraint boundary.

Once § is selected, the search continues in that direction until a minimum in W
is found or until the constraint boundary is again encountered. A new search direction is
selected, and the process is continued until no improvement in W can be obtained.

The complete design process, from initial modeling through optimal redesign, is
accomplished with a set of computer codes linked together as shown in Figure 4. In general,
each code makes use of an input file and output files from codes previously run and creates
a print output file and related files to be used by the next set of codes. The function of
each code is discussed briefly below.

SAMGEN generates the mass and stiffness matrices for the system. SAMGEN
also writes the matrices [K], [K1], [MO], and [Mi] to a file. These matrices are ordered
according to design-variable information supplied by the user. U

WEIGHT reads the SAMGEN input file and creates a file of the weight coefficients
W. and Wi.

DVLINK is a design-variable linking code. By linking design variables, any number
of smaller design problems can be created from a single system model. DVLINK also scales
the matrices associated with each design variable with user-supplied scale factors, so it is
also possible to create any number of new designs from a single system model. If desired,
the coefficients from WEIGHT can also be linked.

13
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COLAPS DVLINK WEIGHT

-VIBEVX

COI'#IIN GRMOPTA E

* . Figure 4. Flow of Information Among Codes.

COLAPS is a code that eliminates unwanted degrees of freedom from the system
model by static reduction. Matrices from SAMGEN or DVLINK can be assembled and

Scollapsed.

* VIBEVX takes the collapsed mass and stiffness matrices or uncollapsed matrices
from SAMGEN or DVLINK and computes the undamped frequencies and mode shapes.

.? ?PARMAT takes information from VIIBEVX and SAMOEN or DVLINK and com-

S

putes the generalized matrices [GKo], [GKI], [GMo], f GM,], [GD], [GO,1], and [G0'2 1.

atosGRMOPT is the driver for CONMIN. All input, updating, and derivative calcu-
lain are performed in GRMOPT for designs determined by CONMIN.

GRMCLC is a version of GRMOPT that performs only the analysis and derivative
~ -. calculations without calling CONMIN. It makes use of the same input file that GRMOPT

does and is used to compute grammians and verify that the optimization problem is set
up properly.

All the codes are written in Fortran and are run on DEC VAX-series computers
under VMS.

2.4 Control Evaluation

The control engineer traditionally has little or no input into the design of the
hardware he is supposed to control. This is true not only for large space structures, but also
for most systems, including aircraft, spacecraft, automobiles, process control plants and

14
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servos. In some cases, the control engineer may be able to specify the number, location,
and site of sensors and actuators. The F-16 control-configured vehicle (CCV) is a rare
example of control being integrated into the system engineering process from the very
beginning.

Structural dynamics has only recently become of interest to spacecraft control
engineers. Accustomed to relatively stiff structures and loose performance requirements,
they have been able to deal with flexibility using sample design techniques. Now, driven
by very stringent performance requirements, they have been forced to make use of all
available tools and to come up with new ones. Unfortunately, the "large space structure"
(LSS) control field has seen relatively little cooperation between the control and structures
camps. Most control engineers try to solve the problem with purely active techniques,
while most structures engineers, wary of things non-mechanical, prefer to use purely passive
techniques. There are but a handful of engineers who have had formal training in both
disciplines, especially when compared to the number who profess to be experts in both.

There is obviously much room for cooperation, which should make both the control
and the structures engineers' jobs easier. Modal shaping and passive damping will improve
robustness, and high-authority control will produce high performance without excessive
structural mass. The control engineer thinks of a space structure as being "large" as
soon as performance requirements force him to consider flexibility. Skylab was physically
"large" but a space-based laser of comparable size represents a radically more difficult
control problem.

In looking at structures from a control viewpoint, an LSS control engineer will
typically look at this problem in the frequency domain. Given a closed-loop bandwidth
dictated by performance requirements and disturbance spectra, the frequency scale may
be divided into three regions (see Figure 5):

(1) The bandwidth - that part of the frequency scale where gain is high

(2) the crossover region, where the gain is rolling off, and

(3) the rest, where the controller has essentially no effect.

Structural modes inside the control bandwidth must normally be actively con-
trolled, and those beyond the crossover region are usually ignored. The most difficult
modes to deal with are those in the crossover region. Trying to control them actively sim-
ply increases the control bandwidth, moving the problem to a higher frequency. Yet these .

modes cannot be ignored because they can easily be driven unstable. A sharp roll-off or
frequency shaping in the control system can help, but at the cost of decreasing robustness
inside the control bandwidth (Figure 6).

15
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The ideal situation from the control engineer's viewpoint is to have a large natural
gap in the structure's actual frequencies (Figure 7). Such a gap highlights the difference
between modes that are clearly significant and those that can be ignored.

Control
Gain

Modes

0dB-

Large Natural Gap

Figure 7. A Large Natural Frequency Gap Makes the Control Engineer's
Job Easier.

Fortunately, frequency gaps occur quite naturally in many classes of structures.
Structures with repeated elements exhibit strong modal clustering around the natural fre-
quencies of the basic element (Figure 8). Although tight modal clustering can complicate
the control engineer's task, the natural gaps help matters significantly. In complex struc-
tures with little symmetry and few repeated elements, clustering is reduced and there may
be no identifiable gaps (Figure 9).
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Figure 8. Natural Clustering in Repetitive and Symmetric Structures.
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Figure 9. A "Control Nightmare".
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The ability to shape the structure's frequency response characteristics can yield
many other benefits to the control designer:

1. The structure's response to colored noise disturbances can be reduced by moving
modes out of the frequency ranges of disturbances. Ideally, one would shape the
transfer function to place transmission zeros over disturbances frequencies (this
is essentially a structural notch filter). This would minimize the amount of effort
that would have to be provided by the control system to reduce disturbances.

2. Modes that are closely spaced could be separated to make them more controllable,
observable, and identifiable.

The control engineer's task can be thought of as creating a controller frequency
response that, in combination with the structure's frequency response, yields desirable

U closed-loop time and frequency response.
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SECTION 3

]EXAMPLES

~Ji

3.1 Dumbbell Model No. 1

The first system to be analyzed, a low-order beam model with point masses, is
shown in Figure 10. Two five-foot aluminum tubes, with cross-section dimensions given
in the figure, support a 10-lb mass at the center and 5-lb masses at each end. Free-free
motion in the y - z plane is allowed. The disturbances are a torque about the z axis
and a load in the z direction at node 2, and the measurements combine the difference in
z-direction displacements at nodes 1 and 3, and its rate.

pY

505 lb.

DV 1 01.xA-2i
R. d -0.125 in+

5' 1b. (D 60 in (typ)d

Material: Aluminum

Figure 10. Layout of Dumbbell Model No. 1.

Table 2 gives the elastic frequencies computed for this model; there are also four

L. rigid-body modes, corresponding to translations in the y and z directions and rotations
about the x and y axes. Since the measurements are only affected by antisymmetric

disturbances and modes, only the crD, for antisymmetric modes involving z displacements
are nonzero, and the torque disturbance is the only significant input. Modes 6 and 10 are

the first two antisymmetric z bending modes, so these are the modes of interest here.
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TABLE 2.
Elastic Natural Frequencies of Dumbbell Model No. 1.

Mode No. 5 6 7 8 9 10 11 12
Frequency, Hz 35.06 154.4 313.4 559.9 560.8 646.6 882.8 1120

Two design variables, representing scalings on cross-section properties for each
beam segment, were allowed. The grammians for modes 6 and 10 were constrained, and
lower frequency bounds were also imposed on these same modes. The four constraint
functions thus took the following forms:

Gi = (O4Dc/0.310)- 1

G2 = (CrC,,o/0.130)( 1D (29)
G3 = 1- we/960.0

G4 = 1 - w10/4080

The frequencies are in rad/sec, and modal damping of 0.002 was assumed for the grarmmian
calculations.

To validate the derivative calculations, finite-difference estimations were compared
with analytical computations. GRMCLC was run for the initial design (t, = t2 = 1.0) and
then re-run with t 2 = 1.02 for each of the three resizing options. The results of this exercise

are given in Tables 3-5. For the initial design, crc, = 0.3086, crC. 0 = 0.1197,W6 = 970.0
rad/sec, and wio = 4063 rad/sec. The expected increase in sensitivity as t, R, and then R
and d simultaneously are resized, is demonstrated. Much more striking is the near-perfect
agreement between the finite-difference and the averaged analytical derivatives.

TABLE 3.

Comparison of Derivatives for Dumbbel Model No. 1, for Resizing Option 1 (Scal-
ing d).

Perturbed
Finite Initial Analytical Design

Difference Design Average (t2 = 1.02)

8G 1 /& 2  -0.144 -0.1688 -0.1443 -0.1198
"8G2 /t 2  -0.079 -0.08161 -0.07898 -0.07636
8 G 3 /t 2  -0.049 -0.04872 -0.04914 -0.04957
aG 4 /8t 2  0.0206 0.02026 0.02055 0.02084
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TABLE 4.iComparison of Derivatives for Dumbbell Model No. 1, for Resizing Option 2
(Scaling R).

Perturbed
Finite Initial Analytical Design

Difference Design Average (t 2 = 1.02)

.G 1 lt2  -0.653 -0.6664 -0.6526 -0.6387

aG2/at 2  -0.548 -0.5420 -0.5482 -0.5544
"G 3 /at 2  -0.558 -0.5539 -0.5586 -0.5634

"G 4 /8t2  0.528 0.5181 0.5282 0.5384

TABLE 5.

Comparison of Derivatives for Dumbbell Model No. 1, for Resizing Option 3
(Scaling R and d).

., Perturbed
Finite Initial Analytical Design

Difference Design Average (t 2 = 1.02)

S 8G1/at 2  -0.854 -0.8352 -0.8538 -0.8723

.G 2 /8t 2  -0.642 -0.6236 -0.6410 -0.6583

.G 31/t 2  -0.614 -0.6026 -0.6139 -0.6252

aG 4 /8t 2  0.555 0.5384 0.5548 0.5713

Because of this model's symmetry, there is really only one independent design
variable, so no optimal redesign was attempted.

* 3.2 Dumbbell Model No. 2

In order to provide a more reasonable model for resizing, a model of the dumb-
bell system with more elements was created, as illustrated in Figure 11. There are now
three design variables, as indicated in the figure. The measurements and disturbances are
unchanged from those assumed for Model No. 1.
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Figure 11. Layout of Dumbbell Model No. 2. "

'02"

The elastic natural frequencies of this model are given in Table 6. This higher-
order model has more modes that propagate the disturbance into the measurement; the
three lowest-frequency modes are modes 6, 8, and 14. Modes 6 and 8 correspond to modes
6 and 10 in Model 1.

TABLE 6.

Elastic Natural Frequencies of Dumbbell Model No. 2.

Mode No. 5 6 7 8 9
Frequency, Hz 35.05 138.6 237.2 510.6 513.6

Mode No. 10 11 12 13 14
requency, Hz 553.2 680.0 880.2 1062 1235

To test the redesign procedure, an optimization problem was set up with this model
of the dumbbell. The goal of this optimization problem was to reduce the grammian for
mode 6 to 0.2200, with lower bounds on the frequencies up to mode 13 and an upper
bound on the frequency of mode 8 as well. The results are summarized in Table 7. The
optimized model is almost 4% heavier, and the active constraint is the upper bound on

*. the grammian for mode 6. The design variables were constrained to be between 0.600 and
1.500; these limits were not encountered.

To assess the impact of using fixed mode shapes, normal modes were computed for
the final design from Table 7, and the optimization procedure was restarted. These results
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are given in Table 8. Comparison of the initial design of Table 8 with the final design of
Table 7 gives an indication of the modeling error introduced as a result of fixing the mode
shapes. The frequencies are in general slightly lower and the grammians slightly higher
when the computations were done with normal modes. The final design variables in Table
8 indicate that the optimization process of Table 7 went slightly too far; the overall final
design, given by the products of the final design values from the two tables, is given at the
bottom of Table 8. In principle, one could continue this process by updating the modes
again, but the results would not change significantly.

TABLE 7.

Results of Redesign of Dumbbell Model No. 2

Initial Design Initial Design Final Final
Frequency Constraint Grammian Constraint Frequency Gramnmian

Mode (rad/sec) (rad/sec) OlC. (rad/sec) (rad/sec) orD¢,

5 220.2 >150.0 277.3
6 870.8 >750.0 0.2652 <0.2200 815.2 0.2208
7 1490 > 1200 1672
8 3208 3210> w >2500 0.08655 <0.2200 3130 0.04579
9 3227 >3220 4008
10 3476 >3220 4960

11 4272 >3220 5436
12 5530 >3220 5645
13 6673 >3220 7265
14 7760

No. of Iterations 7

Initial Mass (lbs) 38.84

Final Mass (lbs) 40.28

Final Design Variables:

1.284 0.9655 0.8056

2-4
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TABLE 8.

Redesign of Dumbbell Model No. 2 with Updated Normal Modes

Initial Design Initial Design Final Final

Frequency Constraint Grammian Constraint Frequency Grammian
Mode (rad/sec) (rad/sec) VL¢, (rad/sec) (rad/,ec) 02

5 268.1 >150.0 280.5
6 790.6 >750.0 0.2325 <0.2200 850.2 0.2202

7 1629 >1200 1585

8 3069 3210> w >2500 0.04579 <0.2200 3210 0.04596
9 3724 >3220 3796

10 4281 >3220 4427
11 4977 >3220 4845

12 5213 >3220 5447

13 6696 >3220 7308

14 8000

No. of Iterations 14

Initial Mass (lbs) 40.28 $
Final Mass (lbs) 40.65 51
Final Design Variables:

0.9559 1.084 1.028

Final Design Variables (Overall):

1.227 1.046 0.8280

3.3 CSDL Model No. 1

The next example is a generic model of a large-antenna feed horn, first proposed
by the Charles Stark Draper Laboratory and known as CSDL Model No. 1. A layout
of this model is shown in Figure 12; the data for this model were taken from Reference
15. The base of the horn is assumed fixed to ground; this is equivalent to neglecting any
coupling between antenna motion and horn motion. The regulated quantity is the relative
displacement (line-of-sight error, LOS) of node 1 in the z - y plane, expressed as the z and
y displacements of node 1; the disturbances are forces in all three coordinate directions at
nodes 2, 3, and 4.

There are 12 design variables, one for each truss member in the structure. Because
the nonactive inertia in this model is so much greater than the inertia in the truss members,
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the nonactive inertia was not included in the weight calculation during the optimization,
and the weight coefficients were scaled in order to avoid numerical problems.

#3 DV #2

##12

#

00

Figure 12. Layout of CSDL Model No. 1.

Frequencies and grammians for this model are given in Table 9. As can be seen,
there are two groups of modes, for the most part isolated quite conveniently both spatially
and temporally. Note that the grammians for modes 1 and 2 are much greater than those
for the other modes.
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TABLE 9.
4Natural Frequencies and Grammians ojc, of CSDL Model No. 1.

Mode No. Frequency, Hz Grammian orc

1 0.2152 166.1
* 2 0.2675 203.1

3 0.4701 19.47
4 0.4855 64.25
5 0.5493 59.77
6 0.6750 0.7488x10 - 4

7 0.7487 6.536
8 0.7630 22.98
9 1.362 13.85
10 1.476 0.2267
11 1.640 8.907
12 2.057 2.220
13 40.88 0.1732x10 4

14 44.86 0.1956x10 - 4

15 52.63 0.3624x10- .
16 55.52 0.5126x10- 5

17 55.79 0.2861x10 - 6
18 73.31 0.2503x10 5

A number of structural redesigns were run for the CSDL Model 1 structure. Re-
suits from four of these runs are shown here:

3.3.1 Run 1

The principal objective of this run was to decrease the grammians for modes I
and 2. From Table 9, it can be seen that the first 12 modes, with the exception of mode
6, form the modal group that propagates the disturbances to the measurement. Hence,
upper bounds of 100.0 were imposed on the grammians for this group. Lower bounds of
1.200 rad/sec were imposed on the frequencies in this group. To preserve the frequency
separation between the 12th and 13th modes, an upper bound of 75.00 rad/sec was also
applied to the frequency of mode 12, and a lower bound of 200.0 rad/sec was applied
to the frequency of mode 13. Frequencies and grammians for the remaining modes were
unconstrained. The design variables for this run were restricted to be between 0.800 and
1.500. Option 3 - that is, scaling the complete cross section - was selected for the sizing.
Results for this run are shown in Table 10.

As can be seen from this table, the objectives were achieved with a reduction of
around 31% in the structural weight. During the optimization, the active constraints were
always a combination of the grammian constraints on modes 1 and 2, and the lower bound
on the frequency of mode 1. This design was accomplished by reducing the members
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forming the horn to, or very near to, their minimum allowable size while increasing the
support members to near their maximum allowable size.

TABLE 10.

Results of Run 1 for CSDL Model 1.

Initial Design Initial Design Final Final
Frequency Constraint Grammian Constraint Frequency Graxnmian

Mode (rad/icc) (rad/sec) o¢, (rad/sec) Or2 2

1 1.352 > 1.2 166.1 < 100 1.200 99.41
2 1.681 > 1.2 203.1 < 100 1.607 100.0
3 2.954 > 1.2 19.47 < 100 3.272 47.47
4 3.050 > 1.2 64.25 < 100 3.774 32.81
5 3.451 > 1.2 59.77 < 100 4.447 63.49

6 4.241 > 1.2 .7488x0 - 4  < 100 5.498 0.1575
7 4.704 > 1.2 6.536 < 100 6.051 6.112

8 4.794 > 1.2 22.98 < 100 6.325 0.2241
9 8.558 > 1.2 13.85 < 100 8.021 13.16
10 9.277 > 1.2 0.2267 < 100 8.444 0.5151
11 10.30 > 1.2 8.907 < 100 8.856 8.448

12 12.93 1.2 > W > 75 2.220 < 100 10.47 4.069
13 256.8 > 200 0.173x10 - 4  286.5

No. of Iterations 20

SInitial Mass (Scaled) 5.24

Final Mass (Scaled) 3.61

Final Design Variables:

-. 0.8 0.8 0.8332 0.8 0.8 0.8 1.376 1.374 1.229 1.487 1.488 1.232

3.3.2 Run 2

The objective of this run was essentially the same as that of Run 1, to reduce the
S,. grammians for modes 1 and 2 while retaining the desirable frequency separation between

modes 12 and 13. However, all of the modes and grammians were constrained, and the r

frequency separation desired was increased to a full decade, from 20.00 to 200.0 rad/sec.
Since the final design for Run 1 also meets these goals, the same final design was found
here, although the optimization paths are different. The results for Run 2 are shown in
Table 11.
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TABLE 11.

Results of Run 2 for CSDL Model 1.

Initial Design Initial Design Final Final
Firequency Constraint Grammian Constraint Frequency Grammian

Mode (rad/sec) (rad/eec) 0 (rad/s) c)I

1 1.352 > 1.2 166.1 < 100 1.200 99.41
2 1.681 > 1.2 203.1 < 100 1.607 100.00
3 2.954 > 1.2 19.47 < 100 3.272 47.47

4 3.050 > 1.2 64.25 < 100 3.774 32.81
5 3.451 > 1.2 59.77 < 100 4.447 53.49
6 4.241 > 1.2 .7488X0 - 4  < 100 5.498 0.1575
7 4.704 > 1.2 6.536 < 100 6.051 6.112
8 4.794 > 1.2 22.98 < 100 6.325 0.2241
9 8.558 > 1.2 13.85 < 100 8.021 13.16
10 9.277 > 1.2 0.2267 < 100 8.444 0.5151 P

11 10.30 > 1.2 8.907 < 100 8.856 8.448
12 12.93 1.2 > w > 75 2.220 < 100 10.47 4.069
13 256.8 > 200 0.173x1O-  286.5

No. of Iterations 20

Initial Mass (Scaled) 5.24

Final Mass (Scaled) 3.61

- Final Design Variables:
0.8 0.8 0.8332 0.8 0.8 0.8 .376 1.374 1.229 1.487 1.488 1.232

3.3.3 Run 3

For this run, the grammian constraints on modes 9-18 were reduced to 10.00, and
an attempt was made to introduce a frequency gap between modes 8 and 9 by imposing
an upper bound of 10.00 rad/sec on the frequency of mode 8 and a lower bound of 20.00
rad/sec on the frequencies of modes 9-12. Hence the reduction of the grammians must be
accompanied by a substantial increase in the frequencies of modes 9-12. As can be seen in
Table 12, this could not be done within the confines of the bounds on the design variables.
CONMIN quit after ten iterations failed to produce a feasible design. Not all of the design
variables were at their upper limits, but it is clear that the grammian constraint on mode 2
and the lower frequency bounds on modes 9-12 could not be satisfied even if the structure
were uniformly scaled by a factor of 1.5.
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TABLE 12.

Results of Run 3 for CSDL Model 1.

Initial Design Original Design Final Final

Frequency Constraint Grammian Constraint Frequency Grammian

Mode (rad/sec) (rad/sec) 0 2¢* (rad/sec) 0 2

1 1.352 > 1.2 166.1 <100 1.655 78.45

2 1.681 > 1.2 203.1 <100 2.412 117.30

3 2.954 > 1.2 19.47 < 100 4.346 18.50

" 4 3.050 > 1.2 64.25 <1 00 4.709 34.61

5 3.451 > 1.2 59.77 <100 5.275 41.69

6 4.241 > 1.2 .7488x10- 4  < 100 6.430 0.3695xi0 - 3

- 7 4.704 > 1.2 6.536 < 100 6.767 6.201

8 4.794 1.2 > W > 10 22.98 <100 7.198 13.29

9 8.558 > 20 13.85 <10 12.85 9.388

10 9.277 > 20 0.2267 <10 13.95 0.1054

11 10.30 > 20 8.907 <10 15.49 5.900

12 12.93 > 20 2.220 <10 19.41 1.465

13 256.8 > 20 0.173xi0 - 4  <10 377.7 0.2682x10- 4

14 281.9 > 20 0.1956x10- 4  <10 0.2861xi0 - 4

15 330.7 > 20 0.3624xi0 - 5  <10 0.3576x10 - 5

16 348.9 > 20 0.5126x10 - 5  <10 0.6556x10 5

17 350.5 > 20 0.2861x10- 5  <10 0.6556x10 - 5

18 460.6 > 20 0.2503x10- 5  <10 0.3576x10 5-

No. of Iterations 10

Initial Mass (Scaled) 5.24

S..- Final Mass (Scaled) 11.65

% Final Design Variables:

1.5 1.5 1.015 1.5 1.499 1.5 1.5 1.5 1.5 1.5 1.5 1.5

3.3.4 Run 4

For this run, an attempt was made to reduce the grammians for modes 1-5 to
50.00, and the design variables were allowed to move between limits of 0.500 and 2.000.

NAll other constraints were the same as in Run 2. The results for this run are given in Table
13. The constraints were satisfied, but at the cost of an increase in structural weight of
almost 30%. The active constraints were the grammians for modes 2,3, and 12. The design
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strategy here was similar to that in Run 2, in that the horn member sizes were reduced
and the support member sizes were increased. For this case, however, the upper-bound
limits on the support-member sizes were encountered. Also, many more iterations were
required. The constraints were satisfied after four iterations, with the structural weight
almost doubled, and the remaining iterations were taken up with an agonizingly slow but
ultimately successful effort to reduce this weight.

TABLE 13.

Results of Run 4 for CSDL Model 1.

Initial Design Initial Design Final Final

Frequency Constraint Grammian Constraint Frequency Grammian
Mode (rad/sec) (rad/sec) a2 (rad/sec) 0j,2 -.

1 1.352 > 1.2 166.1 < 50 1.244 42.76

2 1.681 > 1.2 203.1 < 50 1.687 50.16

3 2.954 > 1.2 19.47 < 50 4.708 44.80 U
4 3.050 > 1.2 64.25 < 50 5.585 9.769
5 3.451 > 1.2 59.77 < 50 6.792 37.96

6 4.241 > 1.2 .7488xi0 - 4  < 10 8.640 0.4083xi0 - 3

7 4.704 > 1.2 6.536 < 10 8.887 1.481

8 4.794 > 1.2 22.98 < 10 8.906 0.6374

9 8.558 > 1.2 13.85 < 10 10.64 0.5152

10 9.277 > 1.2 0.2267 < 10 11.37 0.1674

11 10.30 > 1.2 8.907 < 10 11.67 4.509

12 12.93 1.2 > w > 75 2.220 < 10 16.15 9.968
13 256.8 > 200 0.173xi0 - 4  < 10 422.7 0.2205xi0 - 4

14 281.9 < 10 469.5 0.2324x0 - 4

15 330.7 < 10 726.7 0

16 348.9 < 10 761.3 0.1192x10 4

17 350.5 < 10 762.8 0.3576x10 5

18 460.6 < 10 1344 0

No. of Iterations 87

Initial Mass (Scaled) 5.24 "

Final Mass (Scaled) 6.81

Final Design Variables:

1.439 0.8073 0.7797 1.010 0.8762 1.007 2.0 2.0 2.0 2.0 2.0 2.0
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3.4 Control Analyses

Several control analyses were run to determine the effects of changes in the struc-
ture. Since Run 2 gave the same results as Run I and Run 3 failed to achieve a feasible
design, only Runs 2 and 4 were used. The top three struts in the structure were considered
to be active control elements capable of generating axial forces only.

Figure 13 shows the open-loop frequency response of the original structure from the
actuators to the two LOS outputs, LOS-X and LOS-Y. Figure 14 shows the same response
for frequencies less than 20 rad/sec. Note that modes 14-18 do not appear significant in
the response.
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Figure 15 shows the open-loop frequency response of the structure created in Run I
2. The differences with the original design are not dramatic. The same holds true for the
structure created in Run 4, which is shown in Figure 16.
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To determine what effect the structural changes had on control effort and LOS
*performance, a series of optimal regulator designs was performed. The optimal regulator

design minimized LOS and control effort. Full-state feedback was assumed, since it was
- not desired to raise the issue of estimation here.

Figure 17 shows the results of this analysis for the original model. LOS perfor-
mance was defined to be the maximum RMS error in LOS-X and -Y, whereas control
effort was defined to be the maximum RMS force in the three actuators.
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Figure 17.

Figures 18 and 19 show performance vs. effort for Runs 2 and 4. There are no
significant differences with the original model. It is good to note, however, that for the
Run 2 model, similar performance is achieved with a much lighter structure (3.61 vs. 5.24
mass units, scaled).

Finally, the effects of structural changes on the robustness of LQG compensator
design was investigated. Three position sensors were placed on the structure, colocated
with the three actuators. A Kalman filter was then designed to estimate the states of
the first 13 modes. Control designs were used that had equivalent LOS performance and

control effort.
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Figure 20 shows the stability margin for the original design. Figures 21 and 22 show
the margins for the Run 2 and Run 4 models. Again there are no significant differences. -.
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SECTION 4

CONCLUDING REMARKS

In the examples given above, the ability has been demonstrated to exert control,
in some optimal sense, of the natural frequencies and the disturbance-rejection qualities of
a structure. Although the structural models used here have only employed up to 12 design
variables and 37 constraints, the techniques used have been successfully applied to much
larger models in other types of optimization problems, with on the order of 100 design
variables and constraints. There is therefore no reason to doubt that the problems treated
in this work can be applied to models of similar complexity.

The results of the control analyses performed on CSDL Model 1 are inconclusive.
Changes in the structure to reduce measures of its disturbance- rejection capabilities have
not significantly altered its characteristics from a control viewpoint. CSDL Model 1 is a

- structure that is inherently easy to control. There is a large natural break in the frequency
response, and the response rolls off almost monotonically after the first two modes. Because
the structure is so simple, it does not display all of the pathologies of large space structures
that the structural optimization techniques presented in this report are intended to address.
Clearly, more complex test cases are required.

In terms of calculating the sensitivities that are required, everything is in place for
*. including the other grammians in the optimization problem, so that other issues that arise

in controlling flexible space structures can easily be addressed. Similarly, the extension
to integrated controller and structural design with full state feedback, as presented inI Reference 2, is at least conceptually a simple matter. For practical applications, however,
reduced-order controllers are required, and including state estimation in the integrated
design problem remains an open question. For the present, therefore, it appears advisable

*" to continue this work along the following lines:

1. Continue the current applications with more complex models.

2. Incorporate, as appropriate, other grammians into the design problem, and eval-
uate suitable complex models.

3. As an intermediate step, formulate and evaluate the integrated design problem
with full state feedback.

4. Investigate the formulation of the integrated design problem with state estimation
included.
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